Applied Materials Science eBook-EEn(download)
Applied Materials Science eBook-EEn this course contains :
Chapter 1
Introduction to Materials Applications
1.1 Classes of Materials
1.2 Structural Applications
1.3 Electronic Applications
1.4 Thermal Applications
1.5 Electrochemical Applications
1.6 Environmental Applications
1.7 Biomedical Applications
--->Bibliography
Chapter 2
Materials for Thermal Conduction
2.1 Introduction
2.2 Materials of High Thermal Conductivity
2.2.1 Metals, Diamond, and Ceramics
2.2.2 Metal-Matrix Composites
2.2.2.1 Aluminum-Matrix Composites
2.2.2.2 Copper-Matrix Composites
2.2.2.3 Beryllium-Matrix Composites
2.2.3 Carbon-Matrix Composites
2.2.4 Carbon and Graphite
2.2.5 Ceramic-Matrix Composites
2.3 Thermal Interface Materials
2.4 Conclusion
--->References
Chapter 3
Polymer-Matrix Composites for Microelectronics
3.1 Introduction
3.2 Applications in Microelectronics
3.3 Polymer-Matrix Composites
3.3.1 Polymer-Matrix Composites with Continuous Fillers.
3.3.2 Polymer-Matrix Composites with Discontinuous Fillers
3.4 Summary
--->References
Chapter 4
Materials for Electromagnetic Interference Shielding
4.1 Introduction
4.2 Mechanisms of Shielding
4.3 Composite Materials for Shielding
4.4 Emerging Materials for Shielding
4.5 Conclusion
--->References
Chapter 5
Cement-Based Electronics
5.1 Introduction
5.2 Background on Cement-Matrix Composites
5.3 Cement-Based Electrical Circuit Elements
5.3.1 Conductor
5.3.2 Diode
5.4 Cement-Based Sensors
5.4.1 Strain Sensor
5.4.2 Damage Sensor
5.4.3 Thermistor
5.5 Cement-Based Thermoelectric Device
5.6 Conclusion
--->References
Chapter 6
Self-Sensing of Carbon Fiber Polymer-Matrix
Structural Composites
6.1 Introduction
6.2 Background
6.3 Sensing Strain
6.4 Sensing Damage
6.5 Sensing Temperature
6.6 Sensing Bond Degradation
6.7 Sensing Structural Transitions
6.7.1 DSC Analysis
6.7.2 DC Electrical Resistance Analysis
6.8 Sensing Composite Fabrication Process
6.9 Conclusion
--->References
Chapter 7
Structural Health Monitoring by Electrical Resistance
Measurement
7.1 Introduction
7.2 Carbon Fiber Polymer-Matrix Structural Composites
7.3 Cement-Matrix Composites
7.4 Joints
7.4.1 Joints Involving Composite and Concrete by Adhesion
7.4.2 Joints Involving Composites by Adhesion
7.4.3 Joints Involving Steels by Fastening
7.4.4 Joints Involving Concrete by Pressure Application
7.4.5 Joints Involving Composites by Fastening
7.5 Conclusion
---->References
Chapter 8
Modification of the Surface of Carbon Fibers for Use as a
Reinforcement in Composite Materials
8.1 Introduction to Surface Modification
8.2 Introduction to Carbon Fiber Composites
8.3 Surface Modification of Carbon Fibers for Polymer-Matrix
Composites
8.4 Surface Modification of Carbon Fibers for Metal-Matrix
---->Composites
---->References
Chapter 9
Corrosion Control of Steel-Reinforced Concrete
9.1 Introduction
9.2 Steel Surface Treatment
9.3 Admixtures In Concrete
9.4 Surface Coating on Concrete
9.5 Cathodic Protection
9.6 Steel Replacement
9.7 Conclusion
---->Acknowledgment
---->References
Chapter 10
Applications of Submicron-Diameter Carbon Filaments
10.1 Introduction
10.2 Structural Applications
10.3 Electromagnetic Interference Shielding, Electromagnetic Reflection,
and Surface Electrical Conduction
10.4 DC Electrical Conduction
10.5 Field Emission
10.6 Electrochemical Application
10.7 Thermal Conduction
10.8 Strain Sensors
10.9 Porous Carbons
10.10 Catalyst Support
10.11 Conclusion
------->Acknowledgment
------->References
Chapter 11
Improving Cement-Based Materials by Using Silica Fume
11.1 Introduction
11.2 Workability
11.3 Mechanical Properties
11.4 Vibration Damping Capacity
11.5 Sound Absorption
11.6 Freeze-Thaw Durability
11.7 Abrasion Resistance
11.8 Shrinkage
11.9 Air Void Content and Density
11.10 Permeability
11.11 Steel Rebar Corrosion Resistance
11.12 Alkali-Silica Reactivity Reduction
11.13 Chemical Attack Resistance
11.14 Bond Strength to Steel Rebar
11.15 Creep Rate
11.16 Coefficient of Thermal Expansion
11.17 Specific Heat
11.18 Thermal Conductivity
11.19 Fiber Dispersion
11.20 Conclusion
------> References
Appendix A
Electrical Behavior of Various Types of Materials
Appendix B
Temperature Dependence of Electrical Resistivity
Appendix C
Electrical Measurement
Appendix D
Dielectric Behavior
Appendix E
Electromagnetic Measurement
Appendix F
Thermoelectric Behavior
Appendix G
Nondestructive Evaluation
Appendix H
Electrochemical Behavior
Appendix I
The pn Junction
Appendix J
Carbon Fibers
download from here
Chapter 1
Introduction to Materials Applications
1.1 Classes of Materials
1.2 Structural Applications
1.3 Electronic Applications
1.4 Thermal Applications
1.5 Electrochemical Applications
1.6 Environmental Applications
1.7 Biomedical Applications
--->Bibliography
Chapter 2
Materials for Thermal Conduction
2.1 Introduction
2.2 Materials of High Thermal Conductivity
2.2.1 Metals, Diamond, and Ceramics
2.2.2 Metal-Matrix Composites
2.2.2.1 Aluminum-Matrix Composites
2.2.2.2 Copper-Matrix Composites
2.2.2.3 Beryllium-Matrix Composites
2.2.3 Carbon-Matrix Composites
2.2.4 Carbon and Graphite
2.2.5 Ceramic-Matrix Composites
2.3 Thermal Interface Materials
2.4 Conclusion
--->References
Chapter 3
Polymer-Matrix Composites for Microelectronics
3.1 Introduction
3.2 Applications in Microelectronics
3.3 Polymer-Matrix Composites
3.3.1 Polymer-Matrix Composites with Continuous Fillers.
3.3.2 Polymer-Matrix Composites with Discontinuous Fillers
3.4 Summary
--->References
Chapter 4
Materials for Electromagnetic Interference Shielding
4.1 Introduction
4.2 Mechanisms of Shielding
4.3 Composite Materials for Shielding
4.4 Emerging Materials for Shielding
4.5 Conclusion
--->References
Chapter 5
Cement-Based Electronics
5.1 Introduction
5.2 Background on Cement-Matrix Composites
5.3 Cement-Based Electrical Circuit Elements
5.3.1 Conductor
5.3.2 Diode
5.4 Cement-Based Sensors
5.4.1 Strain Sensor
5.4.2 Damage Sensor
5.4.3 Thermistor
5.5 Cement-Based Thermoelectric Device
5.6 Conclusion
--->References
Chapter 6
Self-Sensing of Carbon Fiber Polymer-Matrix
Structural Composites
6.1 Introduction
6.2 Background
6.3 Sensing Strain
6.4 Sensing Damage
6.5 Sensing Temperature
6.6 Sensing Bond Degradation
6.7 Sensing Structural Transitions
6.7.1 DSC Analysis
6.7.2 DC Electrical Resistance Analysis
6.8 Sensing Composite Fabrication Process
6.9 Conclusion
--->References
Chapter 7
Structural Health Monitoring by Electrical Resistance
Measurement
7.1 Introduction
7.2 Carbon Fiber Polymer-Matrix Structural Composites
7.3 Cement-Matrix Composites
7.4 Joints
7.4.1 Joints Involving Composite and Concrete by Adhesion
7.4.2 Joints Involving Composites by Adhesion
7.4.3 Joints Involving Steels by Fastening
7.4.4 Joints Involving Concrete by Pressure Application
7.4.5 Joints Involving Composites by Fastening
7.5 Conclusion
---->References
Chapter 8
Modification of the Surface of Carbon Fibers for Use as a
Reinforcement in Composite Materials
8.1 Introduction to Surface Modification
8.2 Introduction to Carbon Fiber Composites
8.3 Surface Modification of Carbon Fibers for Polymer-Matrix
Composites
8.4 Surface Modification of Carbon Fibers for Metal-Matrix
---->Composites
---->References
Chapter 9
Corrosion Control of Steel-Reinforced Concrete
9.1 Introduction
9.2 Steel Surface Treatment
9.3 Admixtures In Concrete
9.4 Surface Coating on Concrete
9.5 Cathodic Protection
9.6 Steel Replacement
9.7 Conclusion
---->Acknowledgment
---->References
Chapter 10
Applications of Submicron-Diameter Carbon Filaments
10.1 Introduction
10.2 Structural Applications
10.3 Electromagnetic Interference Shielding, Electromagnetic Reflection,
and Surface Electrical Conduction
10.4 DC Electrical Conduction
10.5 Field Emission
10.6 Electrochemical Application
10.7 Thermal Conduction
10.8 Strain Sensors
10.9 Porous Carbons
10.10 Catalyst Support
10.11 Conclusion
------->Acknowledgment
------->References
Chapter 11
Improving Cement-Based Materials by Using Silica Fume
11.1 Introduction
11.2 Workability
11.3 Mechanical Properties
11.4 Vibration Damping Capacity
11.5 Sound Absorption
11.6 Freeze-Thaw Durability
11.7 Abrasion Resistance
11.8 Shrinkage
11.9 Air Void Content and Density
11.10 Permeability
11.11 Steel Rebar Corrosion Resistance
11.12 Alkali-Silica Reactivity Reduction
11.13 Chemical Attack Resistance
11.14 Bond Strength to Steel Rebar
11.15 Creep Rate
11.16 Coefficient of Thermal Expansion
11.17 Specific Heat
11.18 Thermal Conductivity
11.19 Fiber Dispersion
11.20 Conclusion
------> References
Appendix A
Electrical Behavior of Various Types of Materials
Appendix B
Temperature Dependence of Electrical Resistivity
Appendix C
Electrical Measurement
Appendix D
Dielectric Behavior
Appendix E
Electromagnetic Measurement
Appendix F
Thermoelectric Behavior
Appendix G
Nondestructive Evaluation
Appendix H
Electrochemical Behavior
Appendix I
The pn Junction
Appendix J
Carbon Fibers
download from here
Comments